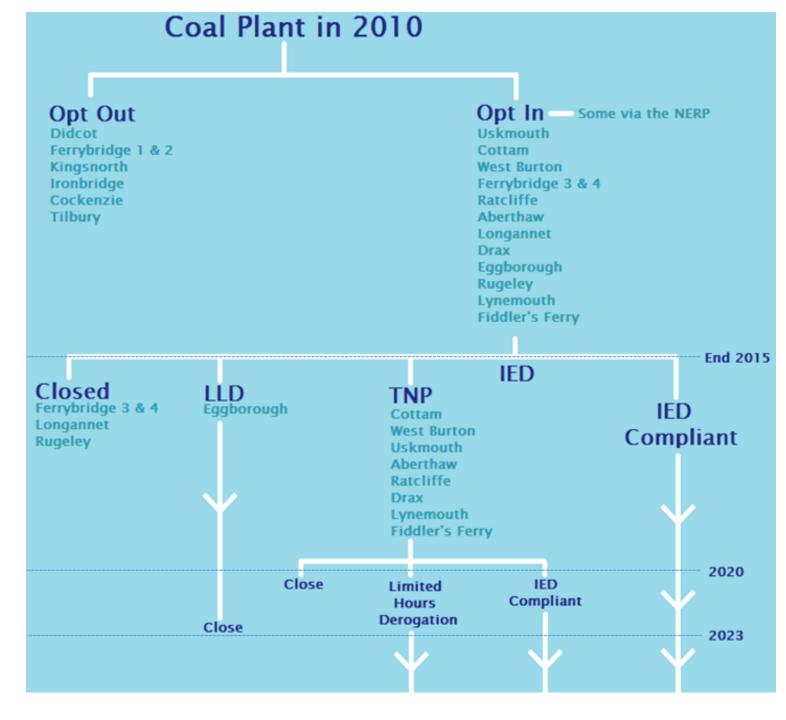
Power Generation: Current Regulatory Requirements

John Henderson & Richard Chase Environment Agency, Combustion Sector Workshop: Power generation (coal, gas, and biomass) under increasingly stringent emissions regulations 6 December 2016

Environmental Permitting

♦ Where we have come from – LCPD & IED

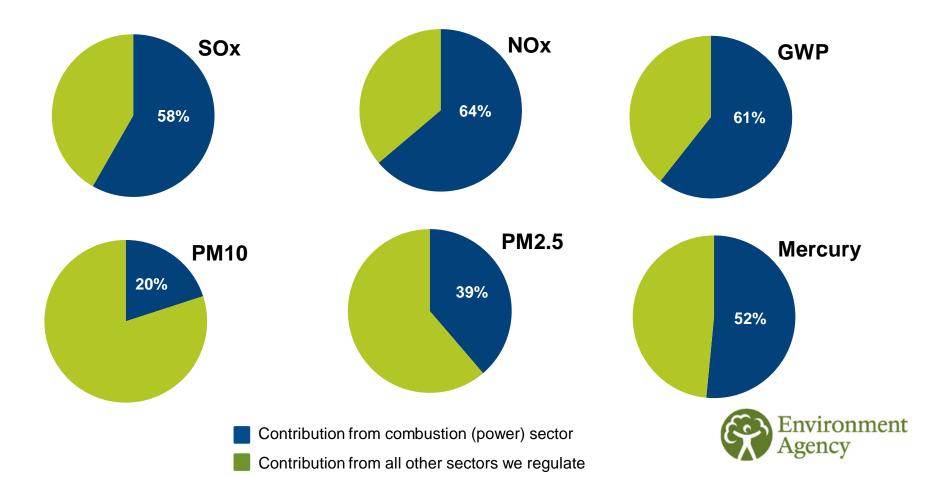

Sector emission to air

What is next – Combustion Bref

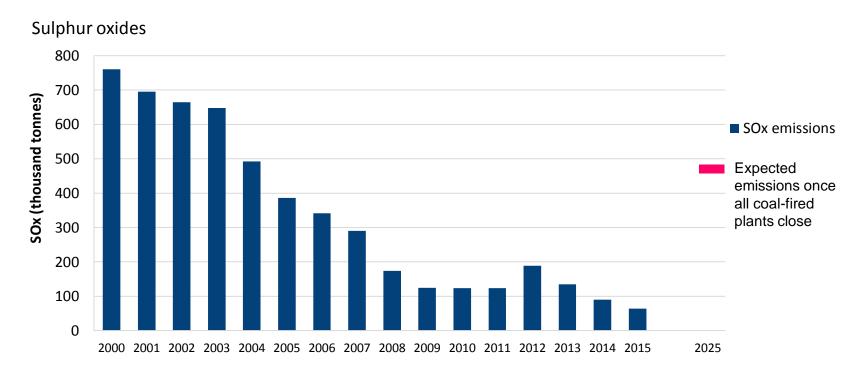
♦ New build – other permitting requirements

ICPD &
IED
Chapter III
decision
tree for
existing UK
coal fired
power
stations

IED Chapter iii, Annex V ELVs, Art.30


		Coal & biomass	6	Gas turbines & engines	
	SO ₂	NOx	Dust PM10	NOx	СО
LCPD existing, 2008	400	500	50	NA	NA
IED existing, 2016, Art30(2)	200	200	20	50	100
IED new, 2016, Art.30(3)	150	150	10 coal, 20 biomass	50	100

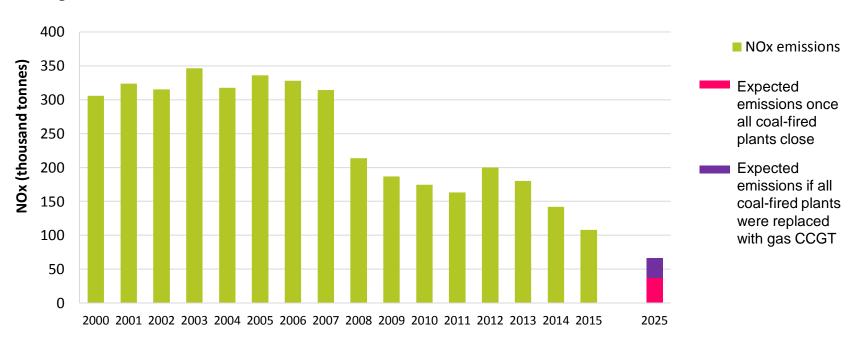
Monthly Emission Limit Values (mg/Nm3) for combustion plant > 300 MWth


Sector objective: reduce emissions to air from combustion (power) plants

- The sector accounts for the majority of SOx, NOx and GWP emissions to air from sites we regulate in England, and is a substantial contributor to PM10 & 2.5 levels.
- As a percentage of all 2015 emissions from sites we regulate, the combustion sector contributed:

Sector objective: reduce emissions to air from combustion (power) plants

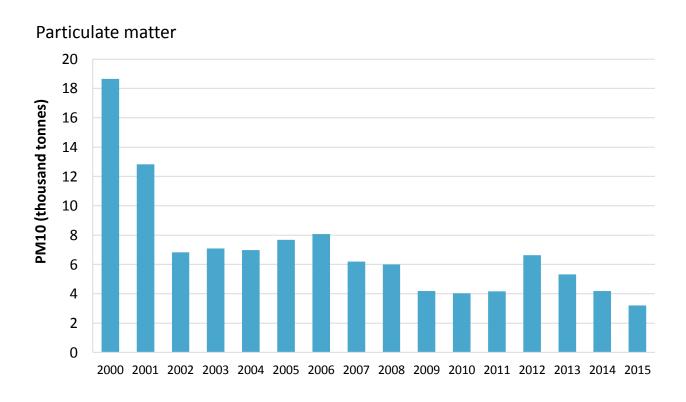
SOx emissions to air from regulated combustion (power) sites, England


- ⇒ 29% decrease in SOx emissions between 2014 and 2015, 92% decrease since 2000
- SOx emissions in 2015 were 64kt, which is less than the sector (England & Wales) Habitats target of 70kt by 2020
- If all coal plant close in 2025 emissions of SOx from the sector will fall significantly

Sector objective: reduce emissions to air from combustion (power) plants

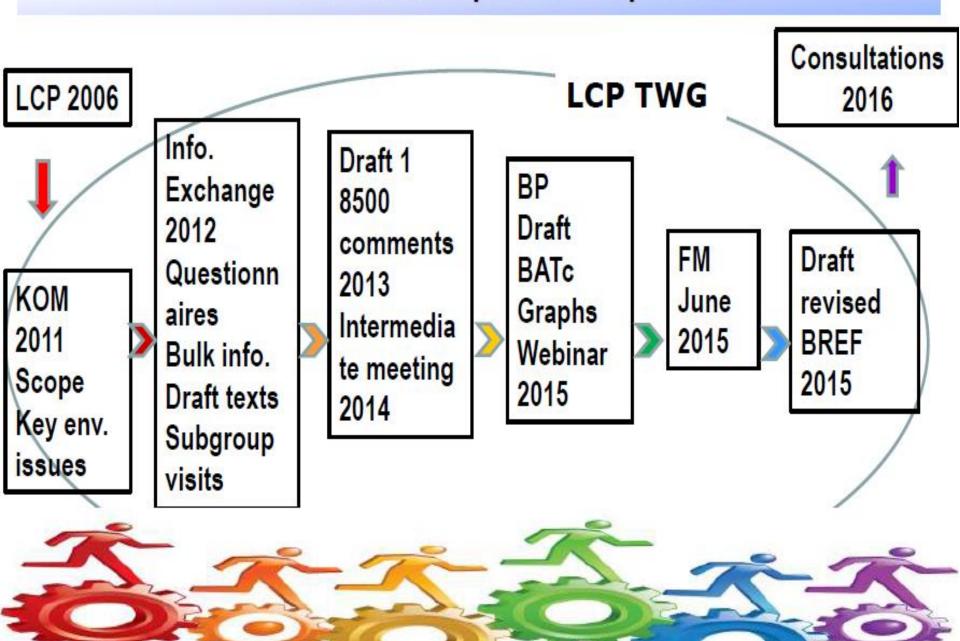
NOx emissions to air from regulated combustion (power) sites, England

Nitrogen oxides



- 24% decrease in NOx emissions between 2014 and 2015, 65% decrease since 2000
- NOx emissions from non coal power stations in 2015 are 37kt
- If coal-fired plants closed in 2025 and were replaced with 10 GWe new gas CCGTs sector emissions would be about 66kt

Sector objective: reduce emissions to air from combustion (power) plants


PM10 emissions to air from regulated combustion (power) sites, England

- ♦ 24% decrease in PM10 emissions between 2014 and 2015, 83% decrease since 2000
- ♦ In 2015, PM10 levels were the lowest recorded since 2000 (3.2kt), dropping below the previous low in 2010 (4kt)
- PM2.5 emission is 2015 were 2.5kt

LCP BREF review process: a process

Outcomes of the LCP BREF

- ◆ 72 BAT AEELs for energy efficiency
- 15 BAT AELs for emissions to water
- 257 BAT AELs for emissions to air(including Hg)
- "Narrative" BAT conclusions
- Interaction with IED

Outcomes (continued)

- ◆ On the whole positive, secured appropriate conclusions for 500 and 1500 hour plant, offshore, indicative CO
- Split views consider site specific applications for Art 15(4) derogations
- Some issues, new high efficiency CCGTs
- Implementation document

Table 10.3: BAT-associated emission levels (BAT-AELs) for NO_X emissions to air from the combustion of coal and/or lignite

Combustion plant	BAT-AELs (mg/Nm ³)					
total rated thermal input	Yearly	average	Daily average or average over the sampling period			
(MW _{th})	New plant	Existing plant (4)	New plant	Existing plant (7) (11)		
< 100	100-150	100-270	155-200	165-330		
100-300	50-100	100-180	80-130	155–210		
≥ 300, FBC boiler combusting coal and/or lignite and lignite-fired PC boiler	50–85	< 85–150 (⁸)(⁹)	80–125	140–165 (10)		
≥ 300, coal-fired PC boiler	65–85	65–150	80–125	< 85–165 (⁶)		

(4) These BAT-AELs do not apply to plants operated < 1500 h/yr.

(6) In the case of plants put into operation no later than 7 January 2014, the higher end of the range is 200 mg/Nm³ for plants operated ≥ 1500 h/yr, and 220 mg/Nm³ for plants operated < 1500 h/yr.</p>

(7) In the case of plants put into operation no later than 1 July 1987, which are operated < 1500 h/yr and for which SCR and/or SNCR is not applicable, the higher end of the range is 340 mg/Nm³.

(8) The lower end of the range is considered achievable when using SCR.

(9) The higher end of the range is 175 mg/Nm³ for FBC boilers put into operation no later than 7 January 2014 and for lignite-fired PC boilers.

(10) The higher end of the range is 220 mg/Nm³ for FBC boilers put into operation no later than 7 January 2014 and for lignite-fired PC boilers.

(11) These levels are indicative for plants operated < 500 h/yr.</p>

BAT 26. In order to prevent and/or reduce NO_X emissions to air while limiting CO and N_2O emissions to air from the combustion of solid biomass and/or peat, BAT is to use one or a combination of the techniques given below.

Technique		Description	Applicability	
a.	Combustion optimisation		Generally applicable	
ъ.	Low-NO _X burners (LNB)	See descriptions in	Generally applicable	
C.	Air staging	Section 10.8	Generally applicable	
d.	Fuel staging			
e.	Flue-gas recirculation		Generally applicable	
f.	Selective catalytic reduction (SCR)	See description in Section 10.8. The use of high-alkali fuels (e.g. straw) may require the SCR to be installed downstream of the dust abatement system	Not applicable to combustion plants operated < 500 h/yr. There may be economic restrictions for retrofitting existing combustion plants of < 300 MW _{th} . Not generally applicable to existing combustion plants of < 100 MW _{th}	
g.	Selective non-catalytic reduction (SNCR)	See description in Section 10.8. Can be applied with 'slip' SCR	Not applicable to combustion plants operated < 500 h/yr with highly boiler variable loads. The applicability may be limited in the case of combustion plants operated between 500 h/yr and 1500 h/yr with highly variable boiler loads. For existing combustion plants, applicable within the constraints associated with the required temperature window and residence time for the injected reactants	

Planning & Permitting – new build Carbon Capture Ready

- CCR is both a planning & permitting requirement for new fossil fuel plant > 300 MWe (Geological Storage Dir.)
- Suitable storage sites are available
- Transport facilities are technically & economically feasible
- Feasibility of technical retrofit of capture (EA in England)
- Retain sufficient space (EA in England)
- ◆ DECC CCR Guidance Nov 2009 & Supplementary Guide 2012.

Planning & Permitting – new build Combined Heat & Power + CHP R

- ◆ CHP assessment & CHP Ready is both a planning & permitting requirement for new fossil fuel plant > 20 MWth & operating > 1500 hrs pa.
- ◆ Permitting both BAT & Art.14 Energy Efficiency Dir.
- 1. Is CHP technically & economically viable / 10% primary energy saving
- 2. No immediate CHP opportunities must be CHP R = Ability to supply defined amount of heat without significant modification
- 3. Periodic review can CHP-R = CHP?

Planning & Permitting – new build Cooling & water

- ◆ EPR requires the maximising thermal efficiency for energy generation.
- ♦ BAT for cooling is once through but is it possible?
- H1 process and complex modelling thermal dispersion
- Proximity & sensitivity of the habitats
- Is the water available? Abstraction reform.
- Eels Regulations & Fish Pass

Any Questions?

